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Intensity fluctuation spectroscopy of charged Brownian 
particles: the coherent scattering function 

P N Pusey 
Royal Signals and Radar Establishment, Malvern, Worcs, WR14 3PS, UK 

Received 29 July 1977 

Abstract. We present measurements, which span wide ranges of scattering vector K and 
delay time T, of the coherent intermediate scattering function F(K,  T) for a dispersion of 
strongly-interacting charged Brownian particles (radius - 250 A). Emphasis is on the 
long-time decay of F(K, T), i.e. for T >>TI, where TI( - s) is the particle ‘collision time’. 
DL. the diffusion coefficient describing this long-time decay, was found to be several times 
smaller than Do, the free-particle diffusion coefficient, and to be only weakly dependent 
on K. We argue that, for K > K,,,, the position of the main peak in the particle structure 
factor S ( K ) ,  F(K,  T) i= Fs(K, T), the self-scattering function which describes single-particle 
motions. We then conclude that the velocity autocorrelation function of a single particle 
has a weak but long-lived negative tail due to the repulsive interactions. Other theories 
relevant to the problem are reviewed briefly. An extended discussion is also given of the 
effects of multiple scattering in these and other experiments. 

1. Introduction 

Recent measurements (Brown et a1 1975b) of the angular dependence of the intensity 
of light scattered by dispersions of charged colloidal particles at low ionic strengths 
yielded structure factors, S(K) ,  and radial distribution functions, g ( r ) ;  (here K is the 
scattering vector and r the interparticle spacing). These were similar in form to those 
obtained for dense atomic liquids by x-ray or neutron diffraction, indicating consider- 
able short-range ordering of the colloidal particles due to repulsive shielded elec- 
trostatic interactions, with a spatial scale comparable to A ,  the light wavelength. Study 
of the time dependence of fluctuations in the scattered laser light (intensity fluctuation 
spectroscopy) provides information on the motions of the particles in the dispersion. 
Here we report the first measurements of the temporal correlation function of the 
scattered light (related to the coherent intermediate scattering function F(K,  7)), 

which span wide ranges of correlation delay time 7 and scattering vector K. 
An important timescale in the system is the ‘collison time’ 7 1 ,  the time taken by a 

particle to move a reasonable fraction of the mean interparticle spacing. For times 
very much shorter than T ~ ,  the dominant influence in moving the particles is the strong 
rapidly fluctuating force due to collisions with the solvent molecules. (This force gives 
rise to the usual ‘free-particle’ Brownian motion.) To date, experiments have 
concentrated on this short-time region and reasonable agreement between experi- 
ment and theory has been found (see § 2). For T ~ T ~ ,  the weaker but longer-lived 
particle-particle forces become important leading to interactive motions of the 
particles. It is this longer-time region which forms the main subject of this paper. 
Typically T~ is of the order of 10-4s. This is in the middle of the range of times 
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(0 to -lo-’ s) covered by photon correlation, intensity fluctuation techniques, which 
therefore provide a useful method for studying the transition from the ‘free-particle’ 
region, T << T ~ ,  to the ‘interactive’ region, T b TI. 

In the next section we provide a more detailed review of past experiment and 
theory, expanding on the brief comments of the previous paragraph. Section 3 
describes the experimental details, the data analysis and the results. It was found that, 
for T >> T ~ ,  the scattering function F(K, T )  was well represented by a single exponential 
in T for K both less than and greater than K,,,, the position of the main peak in S(K) .  
The diffusion coefficient associated with this longer-time behaviour was several times 
smaller than the free-particle diffusion coefficient and was only weakly dependent on 
scattering vector K. In 0 4 we discuss sources of experimental error and uncertainty 
which include sample polydispersity, the presence in the samples of particulate 
contaminants of undetermined origin and multiple scattering. The discussion of 
multiple scattering (0 4.3) is quite detailed, with assessments of its effect in earlier 
experiments as well as the present one. We suggest that, while the short-time decay of 
F(K, T )  can be severely distorted by multiple scattering, the long-time behaviour is 
relatively unaffected. 

In 0 5 the results are discussed. No theory for the complete behaviour of F(K, T )  

appears to exist at present. In Q 5.1 we make one or two general comments on both 
the short- and long-time behaviours. In § 5.2 we argue that, for K>K,,,, the 
dominant contribution to F(K,  T )  comes from single-particle correlations so that a 
measurement of F(K, T)~K>K,, can be regarded as an estimate of the self-scattering 
function Fs(K, 7). Then, by exploiting the similarity with incoherent neutron scatter- 
ing by simple liquids, we conclude that the velocity autocorrelation function of a single 
particle has a weak but long-lived negative tail. A particle can be thought of as 
moving in a continuously evolving repulsive ‘cage’ formed by its neighbours. Thus 
two self-diffusion coefficients describe single-particle motions: the free-particle 
diffusion coefficient DO for times T << TI, and, for T >> TI, a diffusion coefficient which is 
several times smaller than DO because of the hindering effects of the repulsive 
interactions. In Q 5.3 we speculate briefly on the long-time behaviour of the coherent 
function F(K, T) .  Section 5.4 is devoted to a brief review of other theoretical attempts 
to treat Brownian motion in interacting systems. 

2. Review of previous work 

2.1. Theory 

The discussion will be limited to spherical particles. Under the conditions of these 

where g‘”(K, T )  is the normalised temporal autocorrelation function of the complex 
analytic field of the light scattered at wavevector K. Here c is a constant of order one 
for a given experiment, determined by such factors as spatial coherence of the 
scattered light at the detector, and K = ( 4 ~ / A ) n  sin(8/2), where A is the light 
wavelength in uucuo, n the refractive index of the supporting liquid and 8 is the 
scattering angle. If it is assumed that the particles all have the same size (i.e. that they 
are monodisperse) and that the scattering is weak enough that the first Born ap- 
proximation can be applied, then 

experiments intensity fluctuation spectroscopy provides a measure of c 1/2 Ig (1) (K, T ) / ,  
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where the coherent intermediate scattering function F(K,  T) is given by 

and the structure factor S(K) by 

S ( K ) = F ( K ,  0). (3 ) 
Here N is the number of particles in the scattering volume and r i ( t )  the position of 
particle i at time t. S ( K )  is most easily obtained by separate measurements of the 
time-averaged scattered intensity. (For non-interacting particles S ( K )  = 1.) The 
radial distribution functions g ( r )  can be obtained by numerical Fourier transformation 
of S ( K )  (Brown er a1 1975b). 

Our main concern here is the functional form of F(K,  T ) .  For non-interacting 
particles (e.g. low particle concentration, moderate electrolyte concentration where 
interparticle interactions are shielded) it is straightforward to show that (e.g. Cummins 
and Pusey 1977) 

F(K, T ) = F ~ ( K ,  ~ ) = e x p ( - ~ o ~ ' ~ )  (4) 
where Fs(K, T )  is the self-(or incoherent) intermediate scattering function (0 5.2)  and 
Do is the 'free-particle' diffusion coefficient. It was argued in a previous paper (Pusey 
1975) that, in the presence of long-range interactions, two types of force act on a 
particle: a strong, rapidly fluctuating 'Brownian force' due to the solvent molecules 
and a weaker, but longer-lived 'interaction force' due to the interparticle Coulombic 
forces. (As before we assume that the dominant effect of the small counter-ions is 
simply to determine the form of the shielded Coulombic interparticle potential; see, 
however, Harris (1976).) These forces, in turn, give rise to two components of the 
particle velocity: a Brownian component VB with large mean-square value fluctuating 
on a timescale TB = lO- 'Os and an interaction 'drift velocity' component VI with much 
smaller mean-square magnitude fluctuating on timescale T~ = s. In terms of this 
model, with one or two additional assumptions, it can easily be shown that (Pusey 
1975) 

F(K, T)/g<<T<<rr = S(K)-D&'T + * * 

d d -Ig(l)(K, 1 E-- lnlg")(K, 711 1 = - D,~K' 
dT 

Defi 5 Do/S(K).  (7 ) 

(5) 

so that the initial decay of [g(')(K, T ) /  (equation (1)) is given by 

(6 1 
Tg<<T<<TI dT rg<< 7<< TI 

where 

Thus the initial decay of lg'')(K, T ) I  depends on the interaction only through the 
time-averaged structure S(K).  The analogy between this result and 'de Gennes 
narrowing' in neutron scattering has been pointed out by Pusey (1975) and Ackerson 
(1976). 

Previously (Pusey 1975) it was perhaps not emphasised strongly enough that this 
derivation of equations (6) and (7) neglects hydrodynamic interactions, the effects on 
the motion of one particle of disturbances in the solvent set up by other particle 
motions (see, however, Ackerson 1976, 1977, Harris 1976). At the low volume 
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fractions, less than about typically used in these experiments this neglect would 
certainly be justifiable if the particles did not interact directly. Even in the presence of 
direct interactions the effect is probably small. 

Equations (6) and (7) have also been derived independently by Ackerson (1976) 
and Berne (1977) (see P 5.4), and a more detailed discussion of the assumptions 
inherent in the derivation has been given by Harris (1976). 

2.2. Experiment 

Three different systems with Coulombic interactions have been studied by intensity 
fluctuation techniques in regions where S ( K )  shows significant K dependence. 
Experiments by Pusey et a1 (1972) and Schaefer and Berne (1974) on the spherical 
virus R17 (radius - 140 8,) showed the inverse dependence of D,tr on S ( K )  predicted 
by equations (6) and (7), though the value of D,tr was somewhat lower than predicted, 
possibly because of disruption of the virus particles at low ionic strength. Brown et al 
(1975b) studied polystyrene spheres of radius around 250 8, and found reasonable 
agreement with the theory over wide ranges of K vector and dispersion concentration. 
(Significant structure was found in a dispersion with a mean interparticle separation of 
nearly 20 particle diameters.) Schaefer and Ackerson (1975) reported measurements 
on polystyrene spheres of radius about 5008, near a 'melting transition' from a 
solid-like to a liquid-like arrangement of particles. Again equations (6 )  and (7) were 
obeyed qualitatively but Deff was found to be significantly larger than predicted. It 
now seems likely that multiple scattering was responsible for this, in part, if not wholly 
(see § 4.3). 

3. Experimental, data analysis and results 

Several samples of polystyrene spheres were studied but only one is discussed in detail 
here (see, however, § 5.5). This came from the same preparation as the samples used 
by Brown et a1 (1975b). The particles had a mean radius of about 250 8, with the 
standard deviation of the radius being about 19% of the mean. (See § 4.1 and Brown 
er al (1975b) for further discussion of the effects of sample polydispersity.) The 
sample was prepared in a 1 cm x 1 cm scattering cell containing beads of ion exchange 
resin using procedures described previously. It stood for 12 days before measure- 
ments were made so that the ion exchange resin could remove residual electrolyte and 
allow the full structure to develop. The concentration was about 1.25 X g ~ m - ~ ,  
about 2.5 times larger than the highest concentration used by Brown et al. 

Light scattering/photon correlation equipment was the same as that used by 
Brown et a1 except that a more versatile scattering photometer, similar to that 
described by Pusey et a1 (1974), was used. The 48-channel 'one-bit' correlator was 
operated in the single-scaled mode (e.g. Jakeman et al 1972), where, by contrast with 
the clipping mode, the quantity c(§ 2.1) does not depend on correlator sample time T. 
It was therefore possible to link directly measurements made with different sample 
times to obtain composite correlation functions spanning wide ranges of delay time T 

(see e.g. figure 2). 
The measurements were made at ambient temperature, 20 f 1.5 "C. Experimental 

results were referred to 20 "C by making the usual (temperature/viscosity) correction 
to the delay time T (e.g. Pusey et al 1974). Thus, in figures 1 , 2  and 4, T is a corrected 
time; in figure 3 the diffusion coefficients Dee and DL are similarly corrected to 20 "C. 
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Figure 1 shows results obtained for 'non-interacting' particles. A dilute sample 
(- 2 x g cmd3) of the 250 8, radius spheres was prepared in a NaCl solution of 
about lo-' M which should screen the Coulombic interactions effectively. Plots of 
ln(c"21g(')(K, .)I) against K27 are shown for scattering angles 0 = 30", 90' and 160" 
( K  = 0.886 x lo5 cm-', 2.42 x lo5  cm-' and 3.37 x lo5 cm-'). As predicted by equa- 
tion (4) the data for the three angles are virtually superimposed and lie on a nearly 
straight line. In fact the solid line in figure 1 is 

ln(c"2/g"'(K, 7)/) = - 0.062 -BoK27 + i p 2 ~ '  (8) 
where the mean free-particle diffusion coefficient 6, = 8.56 x lo-' cm2 s-' and the 
second cumulant p2, which in the absence of particle interactions describes the effect 
of polydispersity, is given by p2 / (noK2)2  = 0,015. These values are taken from § 4.1 
of Brown et a1 (1975b). (Previously, due to an arithmetical error, it was stated 
erroneously that BO should change by 4% due to polydispersity as K varies from 0 to 
3 X 10' cm-'. In fact the effect predicted by equation (20) and table 1 of Brown et a1 
(1975b) is less than 1%, no larger than experimental error in figure 1.) 

U 
5x107 

ic27 ( 5  cm-2) 

Figure 1. Correlation functions for non-interacting particles at scattering 
90" and 160". For short times the data virtually superimpose and 'reprc 
points only are shown. The full line is the 'theoretical' result (see text). 

-1 

c 

.- 
I 

U 

C 

-2  

3 - 3  
1 

ic27 ( 5  cm-2) 

Figure 1. Correlation functions for non-interacting particles at scattering angles 0 = 30°, 
90" and 160". For short times the data virtually superimpose and 'representative' data 
points only are shown. The full line is the 'theoretical' result (see text). 

angles 0 = 30°, 
sentative' data 

Figure 2 shows correlation functions obtained with the interacting sample for 
8 = 30", 76.5" and 140". For comparison, the full line of figure 1 is reproduced. The 
effect of the interactions is striking. At short times the data were analysed by the 
method of moments or cumulants with extrapolation to zero delay time T, to provide 
unbiased estimates of c, the effective diffusion coefficient Des (equation (6)) and the 
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K2 r / s  cm-*1 

Figure 2. Correlation functions for interacting particles: A, 8 = 140°, K = 3.22 x lo5 cm-' 
( K  > Kmax); B, 8 = %5', K = 2.12 x 10' cm-' (K = Kmax); C, 8 = 30", K = 
0.89 x lo5 cm-' (K << Kmax). 

The free-particle result of figure 1 is reproduced for comparison (curve D). The full 
curves are obtained from the parameters listed in table 1 using equations (9 )  and (IO). The 
inset shows the short-time behaviour in more detail. 

normalised second cumulant p2/(Dee K')' (see e.g. Brown e? a1 1975a or Cummins 
and Pusey 1977 for further discussion of this extrapolation procedure). In figure 3 
D i i  obtained in this way is plotted against scattering vector K. As predicted by 
equation (7) this curve has the form of a typical liquid structure factor S ( K )  with a 
peak at K = K,,, = 2.04 x lo5 cm-', 8 = 73". The broken line in figure 3 is DO', the 
result which would be obtained in the absence of particle interactions. Curve A in 
figure 2 (0 = 140", K = 3.22 X 10' cm-') corresponds to K > Kmax where S ( K ) -  1 ;  the 
initial slope is thus similar to that for free particles, D,R=Do. Curve B (0  = 76.5", 
K = 2.12 x 10' cm-') is for K =Kmax;  here DeR<Do. For curve C (e  = 30", K = 
0.89 x 10' cm-'), K << K,, and Den >>Do. Unfortunately, due to the large curvatures 
in the plots in figure 2, statistical errors in the second cumulants were large: a typical 
result was p 2 / ( ~ e f f ~ 2 ) '  = 2 * I .  

It is evident that for all values of K the long-time K'T dependence of In F(K,  T) is 
roughly linear, implying that F(K,  T) is quite well described by a single exponential for 
large enough T (see 0 5.1). The long-time data were analysed as follows: the cor- 
relator sample time T was set so that the value of c'"lg(')(K, 48T)/ was about e-'" to 
e . Then an unweighted (non-linear) four-parameter least-squares fit of the 48 data 
points representing c "*lg"'(K, T)[ was made to the sum of two exponentials. Provided 
that the initial and final slopes of the semi-logarithmic plot differed by a factor of two 
or more, the fitting programme usually converged to a sensible result after a few 
iterations. The straight parts of the full curves in figure 2 show typical results for the 
more slowly decaying exponential: clearly the data are adequately represented. The 
long-time diffusion coefficients DL obtained from the slopes of these curves are shown 
in figure 3, where DL' is plotted against K.  DL is about three times smaller than Do 
and shows much less K dependence (maximum variation - 30%) than Des. Never- 
theless there appears to be a real 'slowing down' of the long-time decay in the region 
of the peak of S(K).  

-3 



Fluctuation spectroscopy of charged Brownian particles 

0; * I  

1 -  0 .  

--------_- 
I 0.- 

0 . 
, a  0 ,  , I I 

I 

125 

These two-exponential fits did not, in general, provide a good representation of 
the short-time data. In particular the values of Dee obtained in this way were 
invariably lower than those obtained from the cumulants-extrapolation technique 
outlined above. A factor contributing to this is the limited number of channels in the 
correlator: when the sample time was chosen so that the long-time behaviour could be 
investigated, it frequently happened that too few channels covered the short-time 
behaviour, the initial curvatures in figure 2. 

Results of the analysis of the correlation data are given in table 1. We list De* and 
c obtained from the short-time cumulant fits and DL and F L  obtained from the 
two-exponential fits, where F L  is the fractional strength of the long-time exponential. 
The curves shown in figure 2 can then be constructed using the equation 

(9) c'/21g"'(K, .)I = c'/'[(l - F L )  exp(-DsK27)+FL exp(- DLK27)] 

where 

Obviously the initial and final slopes of the experimental correlation functions are well 
represented by these curves. For intermediate times 7, however, agreement is not so 
good especially for K << K,,,. Among the reasons for this are the fact that there is no 
reason a priori why the correlation function should be the sum of just two exponentials 
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Table 1. Compilation of experimental results. 

D~ x io7 FL (DSK2)-’ 8 KxlO-’ DeaX107 c1/2  

(deg) (cm-’) (em's-') (cm2 s-’) (PSI 

20 0.595 
30 0.886 
40 1.17 
50 1.45 
57.5 1.64 
65 1.84 
69 1.94 
73 2.04 
76.5 2.12 
80 2.20 
85 2.31 
90 2.42 

100 2.62 
120 2.97 
140 3.22 
150 3.31 
160 3.37 

13 0.74 0.32 
7 0.74 0.29 
4.8 0.76 0.33 
2.7 0.80 0.33 
1.48 0.84 0.31 
0.77 0.87 0.27 
0.60 0.87 0.25 
0.55 0.87 0.21 
0.59 0.87 0.25 
0.60 0.87 0.27 
0.77 0.86 0.27 
0.92 0.86 0.31 
1.05 0.84 0.32 
1.05 0.84 0.3 1 
0.96 0.87 0.30 
0.93 0.86 0.28 
0.87 0.86 0.30 

0.61 87 
0.57 81 
0.58 66 
0.59 79 
0.61 112 
0.78 116 
0.84 107 
0.74 160 
0.87 80 
0.80 104 
0.65 110 
0.65 82 
0.62 65 
0.58 54 
0.61 49 
0.56 53 
0.61 so 

(see, for example, equations (17) and (21), 0 5.2). Also the short-time behaviour of 
the measured correlation functions is probably distorted by multiple scattering (0 4.3) 
whose effect is most marked for K << Kmax. 

4. Sources of experimental uncertainty 

4.1. Polydispersity 

It should be emphasised that, despite the nearly exponential behaviour of the free- 
particle correlation functions (figure l), the sample studied is quite polydisperse, the 
standard deviation of the radius being about 19% of the mean (§ 3). Although the 
effects of sample polydispersity on intensity fluctuation spectroscopy measurements in 
non-interacting systems now appear to be well understood (e.g. Brown et a1 1975a, 
Cummins and Pusey 1977) this is not yet the case for interacting systems. Neverthe- 
less it is simple to generalise Pusey’s (1975) derivation of equations (6) and (7) to 
cover polydisperse samples with the result that Do in equation (7) is replaced by bo, 
the usual mean diffusion coefficient weighted by the intensity of light scattered by each 
species. However, the effect of polydispersity on the longer-time behaviour of F(K, T) 
is not so obvious. For the remainder of the paper, therefore, we proceed as if the 
sample were monodisperse. 

Recently a Monte Carlo calculation of van Megen and Snook (1977) produced 
‘data’ for the radial distribution function g ( r )  similar to the experimental results of 
Brown et a1 (1975b). Assuming a monodisperse sample, these authors predict that for 
sample concentrations greater than about lop3 g cm-3 the dispersion should have a 
solid-like arrangement of particles. That this does not appear to be the case for our 
sample (concentration - 1.25 X g ~ m - ~ )  may well be due to polydispersity. In- 
deed Schaefer and Ackerson (1975) have argued that ‘charge polydispersity’ (and, 
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presumably, size polydispersity) has the same effect as an impurity in preventing 
crystallisation. 

4.2. Particulate contamination 

The presence of particulate contaminants in the sample in intensity fluctuation 
experiments causes distortion of the measured correlation functions (Cummins and 
Pusey 1977). The important contaminants are of size about A or greater. These 
particles move more slowky than those of the dispersion and their scattering is strongly 
peaked in the forward direction. Thus the main distortions are expected at long times 
and at small scattering angles. The presence of particulate contaminants can be 
detected in several ways: if the photocount flux is measured with an analogue rate 
meter with integration time of order lo-* to 10-1 s, jumpiness of the rate indicates the 
motion of contaminants through the scattering volume, since the more rapid genuine 
fluctuations should be integrated out. Similar indications are a jumpy build-up of the 
correlation function on the oscilloscope display and non-reproducibility of the cor- 
relation function from measurement to measurement. 

Using these criteria it was found that (as before, Brown et a1 1975b). immediately 
after sample preparation, reliable measurements could be made down to 6 = 20". 
However, after waiting 1.2 days for the structure to develop, definite indications of 
particulate contamination were found for 8 d 35'. A contributing factor here is the 
low intensity (S(K)<< 1) scattered by the structured dispersion at small angles. While 
measurements of the initial decay were still quite precise, it was harder to obtain 
accurate long-time measurements and this is reflected in the error bars on DL1 in 
figure 3. The source of this particulate contamination has not been determined yet. It 
may result from residual aggregation of the colloidal particles or from break-up of the 
ion exchange resin. 

It is perhaps worth emphasising that the requirements in these experiments are 
unusually stringent. We have to make measurements on a 12-day-old, fairly-weak- 
scattering sample at long correlation delay times and low scattering angles. 

4.3. Multiple scattering 

The theory outlined in § 2 is based on the first Born approximation. This assumes that 
the probability is negligible that the light is scattered more than once on passage 
through the sample. In any light scattering experiment it is obviously important to 
assess the degree of validity of this assumption. Provided there is no absorption, the 
presence of multiple scattering is easily detected by measuring the attenuation (due to 
scattering) of the laser beam transmitted through the sample. For a weak scatterer, 
the probability p of a single scattering is very much less than 1 and the fractional 
transmitted intensity T, referred to the direct laser intensity, is roughly 1 - p .  If the 
sample container has approximately equal dimensions in the scattering plane so that 
the average path lengths traversed in the sample by unscattered and single-scattered 
light are similar then, in the limit p << 1, the probability of a double scattering is about 
p 2 .  Roughly speaking, then, the relative importance of double scattering compared to 
single scattering is of the order of 9 whose magnitude can be obtained from a 
measurement of T. For our sample T 5 0.8, i.e. 80% of the direct laser intensity was 
transmitted through the sample, and p -0.2. This implies that double and presum- 
ably higher-order multiple scattering must be significant in our experiments. 
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Recently Sorensen et a1 (1976) have considered, both theoretically and experi- 
mentally, the effects of double scattering in a system of non-interacting Brownian 
particles with the assumption of a spherically symmetrical scattering volume. Their 
theoretical results for particle size very much less than A, the case for our sample, can 
be summarised as follows: 

(i) The double-scattered intensity is independent of scattering angle (as is the 
single-scattered intensity for small non-interacting particles). 

(ii) The ratio of polarised to depolarised double-scattered intensities is 8, i.e. 
most of the double-scattered light has the same polarisation as the single- 
scattered light. 

(iii) The initial slope r of the field correlation function (as a function of T) of the 
double-scattered light is independent of scattering angle. Its value is the same 
as that for single-scattered light at 0 = 180", i.e. I' = D o K : ~ ~ .  

(iv) Although this correlation function is not a single exponential, the departure 
from exponentiality is relatively small (the normalised second cumulant is 
always less than 0.07). 

For several reasons these results cannot be applied directly to our experiments: 
firstly there are strong interactions in our system; secondly we did not use the 
spherical scattering volume arrangement considered by Sorensen et a l ;  and thirdly 
higher-order multiple scattering is probably not entirely negligible in our experiment. 
Nevertheless, lacking an exact theoretical treatment of our situation, it seems likely 
that these results can at least provide a guide towards estimating the effects of multiple 
scattering. This conjecture is supported by a few rough measurements on our sample. 

In the present experiment the horizontal laser beam was focused in the scattering 
cell to a diffraction-limited waist of diameter about 200 p.m. The sample, when 
viewed at non-zero scattering angle, showed a bright line (the laser beam profile) due 
predominantly to single scattering and a more extended diffuse bright region due to 
multiple scattering. This scattering region was 1 : 1 imaged onto a vertical slit of width 
a few hundred micrometres and height about 5 mm. Multiple scattering was studied 
by placing an aperture at the slit which blocked the single-scattered light but accepted 
multiple-scattered light from a region of height about 1 mm immediately below the 
laser beam. We found that the intensity of multiple-scattered light showed much less 
angular dependence than that of the total scattered intensity (single and multiple). If 
the multiple-scattered intensity was taken as 1 for large 8, K >Kmax, it increased to 
about 1.6 in the region of the peak and then decreased to about 0.8 for K << K,,,. The 
ratio of multiple-scattered intensity measured in this way to total scattered intensity 
varied from 4% for K > K,, to 2.8% for K - K,,, and around 9% for K << K,,, 
(where the single-scattered intensity is low). The initial slope of the correlation 
function was within 20% of its value r = DoKfso = lo4 s-' for single scattering at 
8 = 180", for all 20" < 8 < 160". 

We can now estimate the effects of multiple scattering in our experiments. Firstly 
the decay time of the correlation function of the multiple-scattered light is rapid 
compared to the long-time decays in figure 2 for all 8. Thus we expect that the 
long-time behaviour of the measured correlation functions, the topic of main interest 
in this paper, will be relatively unaffected by even quite a large amount of multiple- 
scattered light. Obviously the initial decays will be affected as will the relative 
intercepts FL. We can estimate the effect on Dea by writing 
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where (De&, is the measured value of Deff (including the effect of multiple scattering), 
(De& is the value which would obtain in the absence of multiple scattering, cy is the 
fraction of the total intensity which is multiple scattered and r = DoK&O = lo4 s-'. 
Using estimates for Q and the results of table 1 the ratio (Deff)S/(Defi)M can be 
calculated, The results are given in table 2 where we have taken Q to have twice the 
value measured by the method outlined in the previous paragraph in an attempt to 
allow for the extra intensity of multiple-scattered light arising from the primary 
scattering volume. Near 8 = 180" there is virtually no effect since S ( K ) -  1 and single- 
and multiple-scattered light have much the same initial decay rate. At and below 
K,,,, however, the distortion is significant, 25-35%. 

160 0.87 9 . 9 0 ~  lo3 0.080 0 . 8 0 ~  lo' 9 . 8 9 ~  lo3 0.869 1.001 
(K  > K m a d  

( K  = K") 

(K<'Kmax) 

73 0.55 2.28x lo3 0.056 0.56X 10' 142X lo3 0.439 1.25 

20 13.0 4.60X lo3 0.180 1.80X lo' 3.41 X lo3 9.65 1.35 

This is a convenient place to make a few other relevant comments on multiple 
scattering. In our previous measurements (Brown et a1 1975b) we noted a difference, 
for K < K,, in the two most concentrated samples, between S(K) obtained by total 
intensity measurements and Do/D,R. There this was tentatively attributed to counter- 
ion-macro-ion interactions which are not considered in the simple theories outlined in 
§ 2. However it now seems more likely that this was a multiple-scattering effect 
which, for K <K,,, increased the measured value of S ( K )  while decreasing the 
measured value of Di i  by the mechanism described above. 

As outlined above, the ratio of multiple scattering to single scattering in a light 
scattering experiment depends on the scattering power of the sample. Provided the 
peak of the structure factor occurs for 8 well below 180°, the scattering power 
integrated over all 8 can, even in the presence of interactions, be estimated from the 
scattering power assuming no interactions. For particles very much less than A in size 
we define a parameter 

P E T (  pR6 n i - n 2  s2) H 
n; + 2n, 

where p is the particle number density, R the particle radius, n,, the refractive index of 
the particle, n,  the refractive index of the solvent and H is a factor which depends on 
the experimental arrangement (cell size, scattering geometry etc). Somewhat arbi- 
trarily we assume that, for sample 3 of our previous measurements (Brown er a1 
1975b), the effect of multiple scattering was negligible and thereby obtain a 'maxi- 
mum permissible' value P,,,. For this sample p = 2.9 x 10l2 ~ m - ~ ,  R = 250 A, 
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np = 1.6, ns = 1.33 and A = 4880 A. Thus 

P,== 2.1 x IO-~H cm-’. 

For the sample used in the current measurements, P - 7P,,,. 
For the sample used by Schaefer and Ackerson (1975), p = 6.4 X 10l2 ~ m - ~ ,  R = 

500 A and A = 6328 8, giving P = SOP,,,. Thus P for their sample was many times 
greater than both the arbitrary maximum chosen above and the value for the sample 
used in the current work. Although the simple ideas embodied in equation (11) will 
not apply exactly to such a strong scatterer, it is clear that, for large enough a, the 
measured value (De& of the effective diffusion coefficient can be much greater than 
the true single-scattering value (Deff)s. Thus it is possible that the differences between 
theory (equation (7)) and experiment observed by Schaefer and Ackerson (§ 2.2) are 
entirely due to multiple scattering. 

Finally we note that, with the scattering geometry used in the current experiment 
(see above) the multiple-scattered light received by the detector originates from a 
larger volume of the sample than does the single-scattered light. Since the aperture at 
the detector (- 600 km at - 70 cm behind the slit) is chosen to accept roughly one 
coherence area of the single-scattered light, it will accept several coherence areas of 
the multiple-scattered light. The effect of accepting light over several coherence areas 
in an intensity fluctuation experiment is to reduce the intercept c of the time- 
dependent part of the correlation function. This is evident in figure 2 and table 1, the 
largest effect being for K << K,,, where the fractional multiple-scattered intensity a is 
largest (table 2). This reduction of intercept can therefore be taken as a further 
indication of significant multiple scattering. On the other hand, the effect can be 
minimised by limiting the detection slit in the vertical dimension so that all the light 
received at the detector originates from the primary scattering volume. Note, 
however, that this operation should not significantly reduce the distortion of Detr since 
the multiple-scattered light arising from the primary scattering volume will always mix 
coherently with the single-scattered light. 

5. Discussion 

5.1. General comments 

Consider first the short-time behaviour of the scattering function F(K, 7). As has 
been noted already ( 0  3), the plot of Di i ,  obtained from the initial slope of the 
correlation function, against K (figure 3) has a similar form to that found in previous 
measurements (Brown et a1 1975b) which depends on the static structure factor S(K) 
through equation (7). In fact detailed measurements of the average scattered in- 
tensity, and hence S(K), were not made for this sample, since these would have been 
distorted by multiple scattering as outlined in 0 4.3. According to those estimates the 
lower curve in figure 3 should be shifted upwards by 20 to 30% for K 6 K,,,, to 
obtain true ‘single-scattering’ results. 

For times 7 long compared to any characteristic fluctuation time of the particle 
velocities, i.e. T >> q, quite general memory-function arguments (e.g. Pusey 1975) 
predict that F(K, 7) should decay exponentially. This prediction is supported by the 
linear trends in the semi-logarithmic plots of figure 2. An estimate of the fluctuation 
time T~ is the decay time (DSK2)-l of the faster-decaying exponential in a two- 
exponential representation F(K, 7) (equations (9) and (10)). Values of this quantity 
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(table 1) range from around 0.5 X s, and show relatively 
little K dependence. These two observations give qualitative support to the concept 
and properties of an ‘interaction’ component of particle velocity as discussed in 0 2 .  

s to about 1.2 X 

5.2. Single-particle motions 
Further insight into the nature of the particle motions can be obtained by adapting 
some of the theory of neutron scattering by atomic liquids (see, for example, Sjolander 
1965). We write equation ( 2 )  in the form 

i i j  

=Fs(K, T)+FD(K, T ) ,  (13) 

where the self-intermediate-scattering function E’@, T )  describes single-particle 
motions whereas the distinct term FD(K, T )  depends on the correlated motions of 
different particles. In neutron scattering, by using both coherent and incoherent 
techniques, it is frequently possible to measure both F(K,  T )  and Fs(K, T )  thereby 
separating the single-particle and many-particle functions. Unfortunately the light 
scattering method used in the present work is intrinsically coherent providing only the 
full function F(K,  T ) .  However the T = 0 limit of equation (13), 

S ( K )  = 1 + FD(K, 0), (14) 

shows that the departure of S ( K )  from unity is a measure of the importance of the 
many-particle terms. Thus, for K > K,,.,,,, where S ( K ) -  1, a measurement of F(K,  T )  

can be taken as an estimate of Fs(K, T )  since it seems unlikely that, if FD(K, 0) is 
small, FD(K, T )  would be significant. 

By definition (equation (13)), 

N 
Fs(K, T ) = N - ~  1 (exp[iK. ( r j ( 0 ) - r i ( ~ ) ) ] ) = ( e x p ( - i K .  AR(T) ) )  (15) 

i = l  

where we have assumed the particles to be identical and the particle displacement 
U(T)  is defined by 

A R ( T )  = f (7)-  r(O)= IT V ( t )  dt,  
0 

V ( t )  being the instantaneous particle velocity. We now assume A R ( T )  to be a 
Gaussian-distributed random variable. This is certainly a valid assumption for T B  << 
T<< T~ where free-particle Brownian motion dominates and also for times T much 
greater than the maximum velocity fluctuation time T I .  Its validity is questionable for 
T = T ~ .  With this assumption, equation (15) becomes 

Fs(K, T) = exp(-aK2(AR2(7))), (17) 

where, from equation (16), the mean-square displacement is given by 

(AR2(7)) = b ),, ( V ( t )  . V(t’))  dt dt‘. 
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which can be written (e.g. Berne and Pecora 1976, p 84) 

(AR2(7)) = 2 loT (T - t)(  V(0). V( t ) )  dt. 

To proceed further we model the velocity autocorrelation function as follows: 

(V(0). V ( f ) )  = 6DoS(t)-3A exp( - f/n). (20) 
The first term represents the Brownian components of velocity which fluctuate fast 
enough ( T ~  = lO-'Os) that the explicit form of its T dependence is unimportant and can 
be expressed by the Dirac S function. The second term represents the interaction 
components of velocity. A is a positive parameter and the negative sign is chosen a 
posteriori to fit the data (see below). The exponential form for this term is chosen 
simply for convenience. Substitution of (20) in (19) gives 

2(AR2(7)) = D O T - A T I [ T + T I  exp(-T/71)-TI]. 

(AR2(7)) =  DOT, 
For T << T I ,  

the usual result for free-particle Brownian motion. For T >> T I ,  

~ ( A R * ( T ) )  = D ~ T - A T I T + A T ; .  (23) 

Fs(K, T)IT>>,, = eXp[ - ( D O - A T I ) K ~ T ]  exp(-AK2T:). (24) 

Substitution of (23) into (17) gives 

Comparison of (24) with (9) and (1) shows that, for K >Lax (S(K)- 1) and T > > T I ,  

the identifications 

DL = Do - ATI, (25) 

(26) FL = exp( - AK27:)  

can be made. 
In figure 4, - 6  ln(g"'(K, T)I/K' is plotted against T for K = 3.37 X lo5 cm-' 

(S(K)-0.99) and K =2 .42x  lo5 cm-' (S(K)-0*94). Since S ( K ) -  1, the arguments 
given in the first paragraph of this section imply that this quantity should be an 
estimate of (AR2(7)). The data for the two values of K do not superimpose perfectly, 
perhaps because of the 6% contribution from the distinct term for K = 
2-42 x lo5 cm-'. The full curve in figure 4 is equation (21) with parameters A = 
5.48 x cm2 sP2 and T~ = 103 p.s, roughly the mean values for the two sets of data 
obtained from equations (25) and (26) and table 1 (DO = 0.856 X lo-' cm2 s-', 8 3). 
There is quite reasonable agreement between experiment and theory despite the 
many assumptions involved in this comparison. 

Thus, as with dense simple liquids, there appears to be a weak but long-lived 
negative part to the velocity autocorrelation function of a single particle (equation 
(20)). A particle can be thought of as temporarily trapped in a repulsive cage formed 
by its nearest neighbours. Due to motions of these neighbours, the cage is continu- 
ously evolving, only maintaining a given configuration for about one collision time T ~ .  

For times much longer than T ~ ,  a particle 'random-walks' through the dispersion 
with a self-diffusion coefficient DL several times smaller than that which would obtain 
in the absence of interparticle interactions. Obviously, from dimensional considera- 
tions alone, the quantity A can be identified with ( V :  ), the mean-square value of the 
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Figure 4. Mean-square displacement of a particle as a function of time. The full curve is 
equation (21) with values of the parameters as given in the text. The upper set of 
experimental data is for K = 2.42 X lo5 cm-’ (S(K)= 0.94) and the lower set for K = 
3 . 3 7 ~  lo5 cm-’ (S(K)=O.99). For 760.1 ms the two sets of data superimpose. 

interaction component of particle velocity. It is gratifying that the values of ( V : )  = 
5.5 x cm2 sV2 and T ~ = =  100 p,s which describe the present data are not too 
different from previous very rough theoretical estimates, 3 x emz s-’ and 200 p,s 
respectively (Pusey 1975). 

5.3. Cooperative motions 

As with simple liquids, it is quite difficult to obtain even a qualitative feel for the full 
behaviour of the coherent scattering function F(K, 7) in our system. Here we simply 
note that the values obtained for DL (table 1) for K < K,,, where correlated motions 
are important, are similar to those for K >Kmax where single-particle motions 
dominate (0 5.2). This suggests that the ‘Vineyard’ approximation (e.g. Sjolander 
1965, p 321), 

F(K, 7) = S(K)Fs(K, 7) (27) 
might apply for 7 >> 7I although it clearly does not describe the short-time data. It is, in 
fact, for long times that this approximation is most likely to be valid. However, the 
‘Vineyard’ approximation has not been too successful in describing the behaviour of 
simple liquids and it would obviously be prudent to obtain more results on Brownian 
systems before pursuing this approach seriously. In addition, it is not clear how the 
peak in 0;’ (figure 3), if it is real, can be reconciled with equation (27). 

5.4. Other theories 

There have been several theoretical treatments of Brownian motion in interacting 
systems based on N-particle diffusion equations which start more or less from first 
principles (e.g. Murphy and Aguirre 1972, Altenberger and Deutch 1973, Phillies 



134 P N Pusey 

1974, Altenberger 1974, 1976, Ackerson 1976, Hess and Klein 1976). At present, 
however, to make predictions from these theories which apply to specific experiments 
it is still necessary to make approximations such as linearisation of the equations or 
restrictions to weak interactions. It thus appears that none of these theories can yet be 
applied to the current experiments. However, it is hoped that the data presented here 
may stimulate further theoretical progress. 

The theory of this type which, at present, comes closest to being directly useful is 
that of Ackerson (1976) who, in addition to deriving the result of equations (6) and 
(7), also obtained a result for the second cumulant, FZ, in terms of the interparticle 
potential. Unfortunately, in the present work, it was not possible to obtain reliable 
values of k2,  both for the reasons mentioned in 9 3 and because of the distorting effect 
of multiple scattering at short times (9 4.3). Nevertheless, Ackerson (1977) has 
analysed earlier data in terms of this theory. He was also able to estimate the effects 
of hydrodynamic interactions and the counter-ion clouds. 

Berne (1977) has formulated a heuristic model for interacting Brownian particles 
based on a memory-function approach. This gives the correlation function F(K, 7 )  as 
the sum of two exponentials as well as predicting the result of equations (6) and (7). It 
was a simple matter to convert the parameters of the data given in table 1 into the 
parameters of Berne's theory. However, it was not immediately obvious that this 
conversion provided additional insight into the problem and, in the limited space 
available here, we will not discuss this comparison further. Berne (1977) has also 
applied a mode-mode coupling approach to the problem. 

5.5. Other samples 

Measurements were also made on a more dilute sample of the same spheres. Its 
concentration ( -5  X g ~ m - ~ )  was about the same as the most concentrated sample 
studied by Brown et al (1975b) and the peak in S(K) was at 0 - 50". The results 
obtained were qualitatively the same as with the first sample giving further confirma- 
tion that the effects of multiple scattering have not seriously affected the conclusions 
of this paper. The most noteworthy difference concerned the magnitude of DL which 
overall was about 10% higher, presumably reflecting decreased hindering of the 
particle motions in the more dilute sample. On further dilution (so that K,,, 
decreases) it became impossible to make meaningful longtime measurements for 
K CKmax because of the effects of particulate contamination at small angles (9 4.2). 
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Note added in proof. It is worth mentioning that more justification can be given for 
the form of velocity autocorrelation function assumed in equation (20). As a first 
approximation one might take the potential experienced by a particle in its 
instantaneous repulsive cage to be harmonic. The velocity autocorrelation function 
for a harmonically-bound Brownian particle is given by equation (50c) of the classic 
paper by Wang and Uhlenbeck (1945). In the strongly overdamped case it consists of 
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the sum of a positive, large-amplitude, rapidly-decaying exponential due to the 
solvent molecules (modelled by the 8 function in (20)) and a negative, small-ampli- 
tude, slowly-decaying exponential representing the effect of the potential. It seems 
plausible that evolution of the cage, not treated by Wang and Uhlenbeck, will 
decrease somewhat the time constant of the negative exponential, but that the general 
form assumed for equation (20) is a sensible first guess. This ‘diffusing particle in a 
diffusing cage’ model has also been considered by A Bple and P Dalberg (private 
communication). I am grateful to Dr Bple for correspondence on this point as well as 
valuable general criticism of the paper. 

Another reference relevant to § 2.2, not to hand when this paper was submitted, is 
Schaefer (1977). 
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